ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Жюри олимпиады решило по её результатам сопоставить каждому участнику натуральное число таким образом, чтобы по этому числу можно было однозначно восстановить баллы, полученные участником за каждую задачу, и чтобы из каждых двух школьников большее число сопоставлялось тому, кто набрал большую сумму баллов. Помогите жюри решить эту задачу! ![]() |
Страница: << 185 186 187 188 189 190 191 >> [Всего задач: 1111]
Дана ладья, которой разрешается делать ходы только длиной в одну клетку. Доказать, что она может обойти все клетки прямоугольной шахматной доски, побывав на каждой клетке ровно один раз, и вернуться в начальную клетку тогда и только тогда, когда число клеток на доске чётно.
В клетках шахматной доски размером n×n расставлены числа: на пересечении k-й строки и m-го столбца стоит число akm. При любой расстановке на этой доске n ладей, при которой никакие две из них не бьют друг друга, сумма закрытых чисел равна 1972. Доказать, что существует два таких набора чисел x1, x2, ..., xn и y1, ..., yn, что при всех k и m выполняется равенство akm = xk + ym.
Жюри олимпиады решило по её результатам сопоставить каждому участнику натуральное число таким образом, чтобы по этому числу можно было однозначно восстановить баллы, полученные участником за каждую задачу, и чтобы из каждых двух школьников большее число сопоставлялось тому, кто набрал большую сумму баллов. Помогите жюри решить эту задачу!
В квадратной таблице из 9×9 клеток отмечены 9 клеток, лежащие на пересечении второй, пятой и восьмой строк со вторым, пятым и восьмым столбцами. Сколькими путями можно из левой нижней клетки попасть в правую верхнюю, двигаясь только по неотмеченным клеткам вверх или вправо?
На шахматной доске размером 8×8 отметили 17 клеток.
Страница: << 185 186 187 188 189 190 191 >> [Всего задач: 1111] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |