ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Решить систему
   x1 + 2x2 + 2x3 + ... + 2x100 = 1,
   x1 + 3x2 + 4x3 + ... + 4x100 = 2,
   x1 + 3x2 + 5x3 + ... + 6x100 = 3,
    ...
   x1 + 3x2 + 5x3 + ... + 199x100 = 100.

Вниз   Решение


Попробуйте расшифровать отрывок из книги "Алиса в Зазеркалье": " — БЕРПИ Э ЙДЕМГОКВЭЫ БИБЕО-ЖАКЙПЧ ЗВЕЛЕ,  — ЗБИСИВ ФИВМИУ-КЕВМИУ ПЕЛЕВЧЖЕ ДГОСГАМОВЧЖЕ,  — ЕЖЕ ЕСЖИЬИОМ МЕВЧБЕ МЕ, ЬМЕ Э ЦЕЬЙ, ЬМЕКЮ ЕЖЕ ЕСЖИЬИВЕ,  — ЖА КЕВЧФО, ЖА ТОЖЧФО". Текст зашифрован так: десять букв ("а", "е", "и", "й", "о", "у", "ы", "э", "ю", "я") разбиты на пары, и каждая из этих букв в тексте заменена второй из пары. Все остальные буквы точно так же разбиты на пары.

ВверхВниз   Решение


Решить уравнение  

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 201]      



Задача 76423

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Квадратные уравнения. Теорема Виета ]
[ Методы решения задач с параметром ]
Сложность: 3
Классы: 9,10

Решить систему уравнений:
  x² + y² – 2z² = 2a²,
  x + y + 2z = 4(a² + 1),
  z² – xy = a².

Прислать комментарий     Решение

Задача 76440

Темы:   [ Симметрические системы. Инволютивные преобразования ]
[ Симметрические многочлены ]
[ Методы решения задач с параметром ]
Сложность: 3
Классы: 8,9,10

Решить систему:
   x + y + z = a,
   x
² + y² + z² = a²,
   x³ + y³ + z³ = a³.

Прислать комментарий     Решение

Задача 76520

Тема:   [ Системы линейных уравнений ]
Сложность: 3
Классы: 8,9

Решить систему уравнений:
   x1 + x2 + x3 = 6,
   x2 + x3 + x4 = 9,
   x3 + x4 + x5 = 3,
   x4 + x5 + x6 = –3,
   x5 + x6 + x7 = –9,
   x6 + x7 + x8 = –6,
   x7 + x8 + x1 = –2,
   x8 + x1 + x2 = 2.

Прислать комментарий     Решение

Задача 79468

Темы:   [ Системы линейных уравнений ]
[ Перебор случаев ]
Сложность: 3
Классы: 8

Даны пять различных положительных чисел, которые можно разбить на две группы так, чтобы суммы чисел в этих группах были одинаковыми. Сколькими способами это можно сделать?

Прислать комментарий     Решение

Задача 79481

Темы:   [ Уравнения высших степеней (прочее) ]
[ Замена переменных ]
[ Разложение на множители ]
Сложность: 3
Классы: 11

Решить уравнение  

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 201]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .