ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На сторонах треугольника ABC вовне построены квадраты ABB1A2, BCC1B2 и CAA1C2. На отрезках A1A2 и B1B2 также во внешнюю сторону от треугольников AA1A2 и BB1B2 построены квадраты A1A2A3A4 и B1B2B3B4. Докажите, что  A3B4 || AB.

   Решение

Задачи

Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 404]      



Задача 55441

Темы:   [ Теорема синусов ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 4
Классы: 8,9

На окружности радиуса $ \sqrt{6}$ расположены пять различных точек, которые являются вершинами трёх трапеций: KLMN (с большим основанием KN), KMNP (с основанием KM), LMNP (с основанием LP). Найдите площадь треугольника KLM, если известно, что диагонали трапеции KMNP пересекаются под прямым углом.

Прислать комментарий     Решение


Задача 56889

Темы:   [ Теорема косинусов ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Тангенсы и котангенсы углов треугольника ]
Сложность: 4
Классы: 8,9

На сторонах треугольника ABC внешним образом построены квадраты с центрами A1, B1 и C1. Пусть a1, b1 и c1 – длины сторон треугольника A1B1C1, S и S1 – площади треугольников ABC и A1B1C1. Докажите, что:
  а)  
  б)   S1S = 1/8 (a² + b² + c²).

Прислать комментарий     Решение

Задача 64978

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Площадь треугольника (через высоту и основание) ]
[ Отношение, в котором биссектриса делит сторону ]
[ Соображения непрерывности ]
Сложность: 4
Классы: 9,10,11

Из высот треугольника можно составить треугольник. Верно ли, что из его биссектрис также можно составить треугольник?

Прислать комментарий     Решение

Задача 67022

Темы:   [ Вписанные и описанные окружности ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4
Классы: 9,10,11

Два треугольника пересекаются по шестиугольнику, который отсекает от них 6 маленьких треугольников. Радиусы вписанных окружностей этих шести треугольников равны.
Докажите, что радиусы вписанных окружностей двух исходных треугольников также равны.

Прислать комментарий     Решение

Задача 86114

Темы:   [ Площадь треугольника (через высоту и основание) ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Поворот помогает решить задачу ]
[ Векторы помогают решить задачу ]
Сложность: 4
Классы: 9,10

На сторонах треугольника ABC вовне построены квадраты ABB1A2, BCC1B2 и CAA1C2. На отрезках A1A2 и B1B2 также во внешнюю сторону от треугольников AA1A2 и BB1B2 построены квадраты A1A2A3A4 и B1B2B3B4. Докажите, что  A3B4 || AB.

Прислать комментарий     Решение

Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 404]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .