ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Можно ли выложить в ряд все 28 косточек домино согласно правилам игры так, чтобы на одном конце ряда оказалось 5, а на другом 6 очков?

   Решение

Задачи

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 629]      



Задача 88262

Темы:   [ Разбиения на пары и группы; биекции ]
[ Четность и нечетность ]
Сложность: 2
Классы: 5,6,7

Можно ли выложить в ряд все 28 косточек домино согласно правилам игры так, чтобы на одном конце ряда оказалось 5, а на другом 6 очков?

Прислать комментарий     Решение

Задача 89932

Темы:   [ Инварианты и полуинварианты ]
[ Четность и нечетность ]
Сложность: 2
Классы: 6,7,8

На вешалке висят 20 платков. 17 девочек по очереди подходят к вешалке, и каждая либо снимает, либо вешает ровно один платок.
Может ли после ухода девочек на вешалке остаться 10 платков?

Прислать комментарий     Решение

Задача 89937

Темы:   [ Текстовые задачи ]
[ Четность и нечетность ]
Сложность: 2
Классы: 6,7

В магазине продается пачка из 30 лоскутов, каждый лоскут – за свою цену, правда, цены иногда совпадают. Продавец уверяет, что в этой пачке лоскутов стоимостью 1 р. ровно на 7 меньше, чем лоскутков, продаваемых за другие цены. Не ошибается ли продавец?

Прислать комментарий     Решение

Задача 103864

Темы:   [ Простые числа и их свойства ]
[ Четность и нечетность ]
[ Признаки делимости на 5 и 10 ]
Сложность: 2
Классы: 6,7,8

В книге рекордов Гиннесса написано, что наибольшее известное простое число равно  23021377 – 1.  Не опечатка ли это?

Прислать комментарий     Решение

Задача 30418

Темы:   [ Степень вершины ]
[ Четность и нечетность ]
Сложность: 2+
Классы: 6,7

В городе Маленьком 15 телефонов. Можно ли их соединить проводами так, чтобы каждый телефон был соединён ровно с пятью другими?

Прислать комментарий     Решение

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 629]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .