ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Внутри правильного n-угольника взята точка, проекции которой на все стороны попадают во внутренние точки сторон. Этими точками стороны разделяются на 2n отрезков. Занумеруем их подряд: 1, 2, 3, ..., 2n. Доказать, что сумма длин отрезков с чётными номерами равна сумме длин отрезков с нечётными номерами. Решение |
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 507]
У правильного 1981-угольника отмечены 64 вершины. Доказать, что существует трапеция с вершинами в отмеченных точках.
В выпуклом пятиугольнике ABCDE углы при вершинах B и D – прямые, ∠BCA = ∠DCE, а точка M – середина стороны AE. Доказать, что MB = MD.
Внутри правильного n-угольника взята точка, проекции которой на все стороны попадают во внутренние точки сторон. Этими точками стороны разделяются на 2n отрезков. Занумеруем их подряд: 1, 2, 3, ..., 2n. Доказать, что сумма длин отрезков с чётными номерами равна сумме длин отрезков с нечётными номерами.
Радиус OM круга равномерно вращается, поворачиваясь в секунду на угол 360°/N (N – натуральное число, большее 3). В начальный момент он занимал положение OM0, через секунду – OM1, ещё через две секунды после этого (то есть через три секунды после начала) – OM2, ещё через три секунды после этого – OM3, и т. д., ещё через N – 1 секунду после ОМN–2 – OMN–1.
Дан выпуклый восьмиугольник ABCDEFGH, у которого все внутренние углы равны между собой, а стороны равны через одну – AB = CD = EF = GH,
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 507] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|