ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья на тему "Индукция" Материалы по этой теме: Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что при любом натуральном n найдётся ненулевой многочлен P(x) с коэффициентами, равными 0, –1, 1, степени не больше 2n, который делится на |
Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 411]
Дано число, имеющее нечётное число разрядов. Доказать, что одну из его цифр можно вычеркнуть так, что в полученном числе количество семёрок на чётных местах будет равно количеству семёрок на нечётных местах.
Берутся всевозможные непустые подмножества из множества чисел 1, 2, 3, ..., n. Для каждого подмножества берётся величина, обратная к произведению всех его чисел. Найти сумму всех таких обратных величин.
Двое играющих по очереди увеличивают натуральное число так, чтобы при каждом увеличении разность между новым и старым значениями числа была бы больше нуля, но меньше старого значения. Начальное значение числа равно 2. Выигравшим считается тот, в результате хода которого получится 1987. Кто выигрывает при правильной игре: начинающий или его партнёр?
Докажите, что при любом натуральном n найдётся ненулевой многочлен P(x) с коэффициентами, равными 0, –1, 1, степени не больше 2n, который делится на
Докажите равенство:
Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 411] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|