ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Шабат Г.Б.

{an} – последовательность чисел между 0 и 1, в которой следом за x идёт  1 – |1 – 2x|.
  а) Докажите, что если a1 рационально, то последовательность, начиная с некоторого места, периодическая.
  б) Докажите, что если последовательность, начиная с некоторого места, периодическая, то a1 рационально.

   Решение

Задачи

Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 232]      



Задача 98221

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Периодичность и непериодичность ]
[ Рациональные и иррациональные числа ]
[ Обыкновенные дроби ]
[ Уравнения с модулями ]
[ Обратный ход ]
Сложность: 3+
Классы: 8,9,10

Автор: Шабат Г.Б.

{an} – последовательность чисел между 0 и 1, в которой следом за x идёт  1 – |1 – 2x|.
  а) Докажите, что если a1 рационально, то последовательность, начиная с некоторого места, периодическая.
  б) Докажите, что если последовательность, начиная с некоторого места, периодическая, то a1 рационально.

Прислать комментарий     Решение

Задача 98234

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Числа Фибоначчи ]
[ НОД и НОК. Взаимная простота ]
[ Обыкновенные дроби ]
Сложность: 3+
Классы: 8,9,10

Можно ли из последовательности  1, ½, ⅓, ... выбрать (сохраняя порядок)
  а) сто чисел,
  б) бесконечную подпоследовательность чисел,
из которых каждое, начиная с третьего, равно разности двух предыдущих (ak = ak–2ak–1)?

Прислать комментарий     Решение

Задача 105216

Темы:   [ Десятичная система счисления ]
[ НОД и НОК. Взаимная простота ]
[ Уравнения в целых числах ]
[ Обыкновенные дроби ]
Сложность: 3+
Классы: 8,9,10

Найти все несократимые дроби а/b, представимые в виде b,а (запятая разделяет десятичные записи натуральных чисел b и а).

Прислать комментарий     Решение

Задача 107761

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Периодичность и непериодичность ]
[ Рациональные и иррациональные числа ]
[ Обыкновенные дроби ]
[ Обратный ход ]
[ Уравнения с модулями ]
Сложность: 3+
Классы: 8,9,10

Автор: Шабат Г.Б.

Бесконечная последовательность чисел xn определяется условиями:   xn+1 = 1 – |1 – 2xn|,  причём  0 ≤ x1 ≤ 1.
Докажите, что последовательность, начиная с некоторого места, периодическая  а) в том  б) и только в том случае, когда x1 рационально.

Прислать комментарий     Решение

Задача 79423

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ НОД и НОК. Взаимная простота ]
[ Обыкновенные дроби ]
[ Десятичные дроби ]
[ Разложение на множители ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

Найти все такие натуральные n, для которых числа 1/n и 1/n+1 выражаются конечными десятичными дробями.

Прислать комментарий     Решение

Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 232]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .