Страница:
<< 1 2 3 4 5 6
7 >> [Всего задач: 33]
|
|
Сложность: 4+ Классы: 9,10,11
|
Фигура Ф представляет собой пересечение n кругов (n ≥ 2, радиусы не обязательно одинаковы). Какое максимальное число криволинейных "сторон" может иметь фигура Ф? (Криволинейная сторона – это участок границы Ф, принадлежащий одной из окружностей и ограниченный точками пересечения с другими окружностями.)
|
|
Сложность: 5- Классы: 8,9,10
|
В квадрате со стороной 100 расположено
N кругов радиуса 1, причём всякий
отрезок длины 10, целиком расположенный внутри квадрата, пересекает хотя бы
один круг. Доказать, что
N400.
Примечание Problems.Ru: Рассматриваются открытые круги, то есть круги без ограничивающей их окружности.
|
|
Сложность: 5- Классы: 8,9,10
|
Любую конечную систему точек плоскости можно покрыть несколькими непересекающимися кругами, сумма диаметров которых меньше количества точек и расстояние между любыми двумя из которых
больше 1. Докажите это.
Расстояние между двумя кругами — это расстояние между их ближайшими точками.
|
|
Сложность: 4- Классы: 7,8,9
|
Выпуклая фигура F обладает следующим свойством: любой правильный треугольник со стороной 1 можно параллельно перенести так, что все его вершины попадут на границу F. Обязательно ли F – круг?
На плоскости дано 25 точек, причем среди любых
трех из них найдутся две на расстоянии меньше 1. Докажите,
что существует круг радиуса 1, содержащий не меньше 13 из этих точек.
Страница:
<< 1 2 3 4 5 6
7 >> [Всего задач: 33]