ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Девять цифр: 1, 2, 3, ..., 9 выписаны в некотором порядке (так что получилось девятизначное число). Рассмотрим все тройки цифр, идущих подряд, и найдём сумму соответствующих семи трёхзначных чисел. Каково наибольшее возможное значение этой суммы?

   Решение

Задачи

Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 590]      



Задача 98303

Темы:   [ Десятичная система счисления ]
[ Линейные неравенства и системы неравенств ]
[ Принцип крайнего (прочее) ]
Сложность: 3-
Классы: 7,8

Девять цифр: 1, 2, 3, ..., 9 выписаны в некотором порядке (так что получилось девятизначное число). Рассмотрим все тройки цифр, идущих подряд, и найдём сумму соответствующих семи трёхзначных чисел. Каково наибольшее возможное значение этой суммы?

Прислать комментарий     Решение

Задача 30914

Темы:   [ Иррациональные неравенства ]
[ Неравенство Коши ]
Сложность: 3
Классы: 6,7

n – натуральное число. Докажите, что  

Прислать комментарий     Решение

Задача 34837

Темы:   [ Исследование квадратного трехчлена ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 3
Классы: 8,9,10

Про действительные числа a, b, c известно, что  (a + b + c)c < 0.  Докажите, что  b² – 4ac > 0.

Прислать комментарий     Решение

Задача 34912

Темы:   [ Неравенство Коши ]
[ Классические неравенства (прочее) ]
Сложность: 3

Докажите, что для положительных чисел x1, x2, ..., xn, не превосходящих 1, выполнено неравенство
   

Прислать комментарий     Решение

Задача 35235

Темы:   [ Индукция (прочее) ]
[ Алгебраические неравенства (прочее) ]
Сложность: 3
Классы: 8,9

Найдите все натуральные n, для которых  2nn².

Прислать комментарий     Решение

Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 590]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .