ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Можно ли покрасить четыре вершины куба в красный цвет и четыре другие – в синий так, чтобы плоскость, проходящая через любые три точки одного цвета, содержала точку другого цвета?

   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 61]      



Задача 98622

Темы:   [ Куб ]
[ Наглядная геометрия в пространстве ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 10,11

Можно ли поверхность куба оклеить без пропусков и наложений тремя треугольниками?

Прислать комментарий     Решение

Задача 116140

Темы:   [ Сечения, развертки и остовы (прочее) ]
[ Наглядная геометрия в пространстве ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 10,11

Есть два платка: один в форме квадрата, другой – в форме правильного треугольника, причём их периметры одинаковы.
Cуществует ли многогранник, который можно полностью оклеить этими двумя платками без наложений (платки можно сгибать, но нельзя резать)?

Прислать комментарий     Решение

Задача 110769

Темы:   [ Индукция в геометрии ]
[ Наглядная геометрия в пространстве ]
[ Разные задачи на разрезания ]
[ Куб ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 4+
Классы: 9,10,11

Куб с ребром 2n+1 разрезают на кубики с ребром 1 и бруски размера 2x 2x 1 . Какое наименьшее количество единичных кубиков может при этом получиться?
Прислать комментарий     Решение


Задача 98327

Темы:   [ Раскраски ]
[ Куб ]
[ Наглядная геометрия в пространстве ]
Сложность: 2+
Классы: 8,9,10

Можно ли покрасить четыре вершины куба в красный цвет и четыре другие – в синий так, чтобы плоскость, проходящая через любые три точки одного цвета, содержала точку другого цвета?

Прислать комментарий     Решение

Задача 98000

Темы:   [ Развертка помогает решить задачу ]
[ Обход графов ]
[ Наглядная геометрия в пространстве ]
[ Куб ]
Сложность: 3-
Классы: 8,9,10

Автор: Фомин С.В.

Можно ли нарисовать на поверхности кубика Рубика такой замкнутый путь, который проходит через каждый квадратик ровно один раз (через вершины квадратиков путь не проходит)?

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 61]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .