Страница:
<< 51 52 53 54
55 56 57 >> [Всего задач: 598]
|
|
Сложность: 4- Классы: 7,8,9
|
В наборе имеются гири массой 1 г, 2 г, 4 г, ... (все степени числа 2), причём среди гирь могут быть одинаковые. На две чашки весов положили гири так, чтобы наступило равновесие. Известно, что на левой чашке все гири различны. Докажите, что на правой чашке не меньше гирь, чем на левой.
|
|
Сложность: 4- Классы: 7,8,9
|
Дано натуральное число M. Докажите, что существует число, кратное M, сумма цифр которого (в десятичной записи) нечётна.
|
|
Сложность: 4- Классы: 7,8,9
|
Через S(n) обозначим сумму цифр числа n (в десятичной записи).
Существуют ли три таких различных натуральных числа m, n и p, что m + S(m) = n+S(n) = p + S(p)?
|
|
Сложность: 4- Классы: 8,9,10
|
Докажите, что для любого натурального числа d существует делящееся на него натуральное число n, в десятичной записи которого можно вычеркнуть некоторую ненулевую цифру так, что получившееся число тоже будет делиться на d.
Существует ли такой квадратный трёхчлен P(x) с целыми коэффициентами, что для любого натурального числа n, в десятичной записи которого участвуют одни единицы, число P(n) также записывается
одними единицами?
Страница:
<< 51 52 53 54
55 56 57 >> [Всего задач: 598]