Страница:
<< 92 93 94 95
96 97 98 >> [Всего задач: 598]
|
|
Сложность: 4- Классы: 9,10,11
|
Существуют ли такие натуральные n и k, что десятичная запись числа 2n начинается числом 5k, а десятичная запись числа 5n начинается числом 2k?
|
|
Сложность: 4- Классы: 7,8,9,10
|
Петя взял 20 последовательных натуральных чисел, записал их друг за другом в некотором порядке и получил число M. Вася взял 21 последовательное натуральное число, записал их друг за другом в некотором порядке и получил число N. Могло ли случиться, что M = N?
Сколько цифр имеет число 2100?
|
|
Сложность: 4- Классы: 9,10,11
|
Докажите, что последние цифры чисел nn (n – натуральное) образуют периодическую последовательность.
|
|
Сложность: 4- Классы: 9,10
|
Существует ли возрастающая арифметическая прогрессия
а) из 11,
б) из 10000,
в) из бесконечного числа натуральных чисел,
такая что последовательность сумм цифр её членов – также возрастающая
арифметическая прогрессия?
Страница:
<< 92 93 94 95
96 97 98 >> [Всего задач: 598]