Страница:
<< 43 44 45 46
47 48 49 >> [Всего задач: 375]
BD – биссектриса треугольника ABC. Описанная окружность
треугольника BDC пересекает отрезок AB в точке E,
описанная окружность треугольника ABD пересекает отрезок BC в точке F. Докажите, что AE = CF.
На сторонах AB и BC треугольника ABC отложены равные отрезки AE и CF соответственно. Окружность, проходящая через точки B, C, E , и окружность, проходящая через точки A, B, F , пересекаются в точках B и D. Докажите, что BD – биссектриса угла ABC.
Серединные перпендикуляры к диагоналям
BD и
AC
вписанного четырёхугольника
ABCD пересекают сторону
AD в точках
X и
Y соответственно. Докажите, что
середина стороны
BC равноудалена от прямых
BX и
CY .
|
|
Сложность: 3 Классы: 9,10,11
|
На сторонах АВ, ВС и СА треугольника АВС отмечены точки С1, А1 и В1 соответственно так, что ВС1 = С1А1 = А1В1 = В1С.
Докажите, что точка пересечения высот треугольника С1А1В1 лежит на биссектрисе угла А.
Четырёхугольник ABCD вписан в окружность. Диагональ AC является биссектрисой угла BAD и пересекается с диагональю BD в точке K.
Найдите KC, если BC = 4, а AK = 6.
Страница:
<< 43 44 45 46
47 48 49 >> [Всего задач: 375]