ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 372]      



Задача 52478

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вписанный угол равен половине центрального ]
Сложность: 4
Классы: 8,9

Во вписанном четырёхугольнике ABCD через вершины A, B и точку P пересечения диагоналей проведена окружность, пересекающая сторону BC в точке E. Докажите, что если AB = AD, то CD = CE.

Прислать комментарий     Решение


Задача 53724

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4
Классы: 8,9

Четырёхугольник ABCD вписан в окружность с центром O. Докажите, что четыре точки, в которых перпендикуляры, опущенные из точки O на стороны AB и CD, пересекают диагонали AC и BD, лежат на одной окружности.

Прислать комментарий     Решение


Задача 56499

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Вспомогательные равные треугольники ]
[ Признаки и свойства параллелограмма ]
Сложность: 4
Классы: 8,9

На сторонах AB, BC, CD и DA вписанного четырёхугольника ABCD, длины которых равны a, b, c и d, внешним образом построены прямоугольники размером a×с, b×d, с×a и d×b. Докажите, что их центры являются вершинами прямоугольника.

Прислать комментарий     Решение

Задача 65879

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Вспомогательные подобные треугольники ]
[ Теорема Птолемея ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Инверсия помогает решить задачу ]
Сложность: 4
Классы: 9,10,11

Четырёхугольник ABCD вписан в окружность Ω с центром O, причём O не лежит на диагоналях четырёхугольника. Описанная окружность Ω1 треугольника AOC проходит через середину диагонали BD. Докажите, что описанная окружность Ω2 треугольника BOD проходит через середину диагонали AC.

Прислать комментарий     Решение

Задача 66248

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Пересекающиеся окружности ]
[ Четыре точки, лежащие на одной окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Радикальная ось ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9,10

Автор: Якубов А.

Четырёхугольник ABCD вписан в окружность ω с центром O, M1 и M2 – середины сторон AB и CD соответственно; Ω – описанная окружность треугольника OM1M2X1 и X2 – точки пересечения ω с Ω, а Y1 и Y2 – вторые точки пересечения описанных окружностей ω1 и ω2 треугольников CDM1 и ABM2 соответственно с Ω. Докажите, что  X1X2 || Y1Y2.

Прислать комментарий     Решение

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 372]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .