ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 61]
Известно, что уравнение ax5 + bx4 + c = 0 имеет три различных корня. Докажите, что уравнение cx5 + bx + a = 0 также имеет три различных корня.
Вычислите суммы:
б)
Докажите тождества: а) б) в) г) д) (Попробуйте доказать эти тождества тремя разными способами: пользуясь тем, что
Разрезать отрезок [–1, 1] на чёрные и белые отрезки так, чтобы интегралы от любой а) линейной функции; б) квадратного трёхчлена по белым и чёрным отрезкам были равны.
Дана бесконечная последовательность многочленов P1(x), P2(x), ... . Всегда ли существует конечный набор функций f1(x), f2(x), ..., fN(x), композициями которых можно записать любой из них (например, P1(x) = f2(f1(f2(x))))?
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 61] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |