ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 101]      



Задача 35541

Темы:   [ Показательные уравнения ]
[ Возрастание и убывание. Исследование функций ]
[ Корни. Степень с рациональным показателем (прочее) ]
Сложность: 4+
Классы: 10,11

Решите уравнение $2x^x=\sqrt{2}$ в положительных числах.
Прислать комментарий     Решение


Задача 78594

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Индукция (прочее) ]
[ Иррациональные неравенства ]
Сложность: 5-
Классы: 8,9,10

Дано: $$ a_1=1,a_k=\left[\sqrt{a_1+a_2+\dots +a_{k-1}}\right].$$

Найти $a_{1000}$.

Примечание. $\left[A\right]$ — целая часть $A$.
Прислать комментарий     Решение


Задача 78597

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Индукция (прочее) ]
[ Иррациональные неравенства ]
Сложность: 5-
Классы: 9,10,11

Дано:

a1 = 1966, ak = $\displaystyle \left[\vphantom{\sqrt{a_1+a_2+\dots +a_{k-1}}}\right.$$\displaystyle \sqrt{a_1+a_2+\dots +a_{k-1}}$$\displaystyle \left.\vphantom{\sqrt{a_1+a_2+\dots +a_{k-1}}}\right]$.

Найти a1966.
Прислать комментарий     Решение

Задача 73789

Темы:   [ Квадратные корни (прочее) ]
[ Теоремы Тейлора и приближения функций ]
[ Иррациональные неравенства ]
[ Десятичная система счисления ]
Сложность: 5
Классы: 9,10,11

Вычислите квадратный корень из числа 0,111...111 (100 единиц) с точностью до а) 100; б) 101; в)* 200 знаков после запятой.
Прислать комментарий     Решение


Задача 53813

Темы:   [ Подобные треугольники (прочее) ]
[ Теорема Пифагора (прямая и обратная) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Иррациональные уравнения ]
[ Формула Герона ]
Сложность: 4-
Классы: 8,9

В равнобедренном треугольнике ABC точки M и N находятся на боковых сторонах AB и BC соответственно.
Найдите площадь треугольника ABC, если известно, что  AM = 5,  AN = 2,   CM = 11,  CN = 10.

Прислать комментарий     Решение

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 101]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .