ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 101]      



Задача 98129

Темы:   [ Доказательство тождеств. Преобразования выражений ]
[ Иррациональные неравенства ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 8,9,10

Пусть m, n и k – натуральные числа, причём  m > n.  Какое из двух чисел больше:

    или  

(В каждом выражении k знаков квадратного корня, m и n чередуются.)

Прислать комментарий     Решение

Задача 60851

Темы:   [ Рациональные и иррациональные числа ]
[ Корни. Степень с рациональным показателем (прочее) ]
[ Тригонометрия (прочее) ]
Сложность: 4
Классы: 8,9,10

Докажите иррациональность следующих чисел:

а)   ;

б)   ;

в)   ;

г)   ;

д)  cos 10° ;

е)  tg 10° ;

ж)  sin 1° ;

з)  log23 .

Прислать комментарий     Решение

Задача 61167

Темы:   [ Тригонометрические уравнения ]
[ Квадратные корни (прочее) ]
Сложность: 4
Классы: 9,10,11

Решите уравнения при 0o < x < 90o:

a) $ \sqrt{13-12\cos x}$ + $ \sqrt{7-4\sqrt3\sin x}$ = 2$ \sqrt{3}$;

б) $ \sqrt{2-2\cos x}$ + $ \sqrt{10-6\cos x}$ = $ \sqrt{10-6\cos 2x}$;

в) $ \sqrt{5-4\cos x}$ + $ \sqrt{13-12\sin
x}$ = $ \sqrt{10}$.
Прислать комментарий     Решение

Задача 97937

Темы:   [ Индукция (прочее) ]
[ Иррациональные неравенства ]
Сложность: 4
Классы: 8,9,10

Докажите, что для любого натурального  n ≥ 2  справедливо неравенство:   .

Прислать комментарий     Решение

Задача 109174

Темы:   [ Уравнения в целых числах ]
[ Иррациональные уравнения ]
Сложность: 4
Классы: 9,10

Найти решение уравнения     в целых числах.

Прислать комментарий     Решение

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 101]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .