ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Незнайка хочет записать по кругу 2015 натуральных чисел так, чтобы для каждых двух соседних чисел частное от деления большего на меньшее было простым числом. Знайка утверждает, что это невозможно. Прав ли Знайка?

   Решение

Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 201]      



Задача 60508

Темы:   [ Простые числа и их свойства ]
[ НОД и НОК. Взаимная простота ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Разложение на множители ]
Сложность: 4
Классы: 9,10

Докажите, что число  22n – 1  имеет по крайней мере n различных простых делителей.

Прислать комментарий     Решение

Задача 60722

 [Теорема Клемента]
Темы:   [ Простые числа и их свойства ]
[ Арифметика остатков (прочее) ]
Сложность: 4
Классы: 9,10,11

Докажите, что числа p и  p + 2  являются простыми числами-близнецами тогда и только тогда, когда  4((p – 1)! + 1) + p ≡ 0 (mod p² + 2p).

Прислать комментарий     Решение

Задача 60740

Темы:   [ Простые числа и их свойства ]
[ Малая теорема Ферма ]
[ Деление с остатком ]
Сложность: 4
Классы: 9,10,11

Дано простое p и целое a, не делящееся на p. Пусть k – наименьшее натуральное число, при котором  ak ≡ 1 (mod p).  Докажите, что  p – 1  делится на k.

Прислать комментарий     Решение

Задача 60756

Темы:   [ Простые числа и их свойства ]
[ Малая теорема Ферма ]
[ Уравнения в целых числах ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4
Классы: 9,10,11

Пусть p – простое число и  p > 3.
  а) Докажите, что если разрешимо сравнение  x² + x + 1 ≡ 0 (mod p),  то  p ≡ 1 (mod 6).
  б) Выведите отсюда бесконечность множества простых чисел вида  6k + 1.

Прислать комментарий     Решение

Задача 60757

Темы:   [ Простые числа и их свойства ]
[ Малая теорема Ферма ]
[ Уравнения в целых числах ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4
Классы: 9,10,11

Пусть p – простое число и  p > 5.  Докажите, что если разрешимо сравнение  x4 + x3 + x2 + x + 1 ≡ 0 (mod p),  то   p ≡ 1 (mod 5).
Выведите отсюда бесконечность множества простых чисел вида  5n + 1.

Прислать комментарий     Решение

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 201]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .