Страница:
<< 26 27 28 29
30 31 32 >> [Всего задач: 2440]
Можно ли найти четыре целых числа, сумма и произведение которых являются нечётными числами?
Подпольный миллионер Тарас Артёмов пришёл в Госбанк, чтобы обменять несколько 50- и 100-рублёвых купюр старого образца. Ему была выдана 1991 купюра более мелкого достоинства, причём среди них не было 10-рублёвых. Докажите, что его обсчитали.
|
|
Сложность: 2+ Классы: 6,7,8
|
Петя сложил несколько чисел, среди которых было N чётных и M нечётных. Вы можете спросить у Пети про одно из чисел N или M, на ваш выбор, чётное ли оно. Достаточно ли этого, чтобы узнать, чётной или нечётной будет полученная Петей сумма?
|
|
Сложность: 2+ Классы: 7,8,9
|
После урока Олег поспорил с Сашей, уверяя, что он знает такое натуральное число m, что число m/3 + m²/2 + m³/6 нецелое. Прав ли Олег? И если прав, то что это за число?
|
|
Сложность: 2+ Классы: 7,8,9
|
а) Из шахматной доски вырезали клетку a1. Можно ли то, что осталось, замостить доминошками 1×2?
б) Тот же вопрос, если вырезали две клетки a1 и h8.
в) Тот же вопрос, если вырезали клетки a1 и h1.
Страница:
<< 26 27 28 29
30 31 32 >> [Всего задач: 2440]