Страница:
<< 122 123 124 125
126 127 128 >> [Всего задач: 2440]
|
|
Сложность: 3+ Классы: 7,8,9
|
Существует ли 2005 таких различных натуральных чисел, что сумма любых 2004 из них делится на оставшееся число?
|
|
Сложность: 3+ Классы: 7,8,9
|
Найти шесть различных натуральных чисел, произведение любых двух из которых
делится на сумму этих двух чисел.
|
|
Сложность: 3+ Классы: 7,8,9
|
В ряд стоят 15 слонов, каждый из которых весит целое число килограммов.
Если взять любого слона, кроме стоящего справа, и прибавить к его весу удвоенный
вес его правого соседа, то получится 15 тонн (для каждого из 14 слонов). Найдите вес каждого из 15 слонов.
|
|
Сложность: 3+ Классы: 7,8,9
|
Существует ли бесконечное число таких троек целых чисел x, y, z, что
x² + y² + z² = x³ + y³ + z³?
Найдите какие-нибудь пять натуральных чисел, разность каждых двух из которых равна наибольшему общему делителю этой пары чисел.
Страница:
<< 122 123 124 125
126 127 128 >> [Всего задач: 2440]