Страница:
<< 28 29 30 31
32 33 34 >> [Всего задач: 694]
|
|
Сложность: 4- Классы: 10,11
|
Вычислите суммы:
а) 1 + a cos φ + ... + ak cos kφ + ... ( |a| < 1);
б) a sin φ + ... + ak sin kφ + ... ( |a| < 1);
в)
г)
|
|
Сложность: 4- Классы: 9,10,11
|
Найдите формулу
n-го члена для последовательностей,
заданных условиями (
n 
0):
a) a0 = 0, a1 = 1, an + 2 = 5an + 1 - 6an; |
б) a0 = 1, a1 = 1, an + 2 = 3an + 1 - 2an; |
в) a0 = 1, a1 = 1, an + 2 = an + 1 + an; |
г) a0 = 1, a1 = 2, an + 2 = 2an + 1 - an; |
д) a0 = 0, a1 = 1, an + 2 = 2an + 1 + an. |
|
|
Сложность: 4- Классы: 10,11
|
При возведении числа 1 +
в различные степени, можно обнаружить некоторые закономерности:
(1 +
)1 = 1 +
=
+
, (1 +
)2 = 3 + 2
=
+
, (1 +
)3 = 7 + 5
=
+
, (1 +
)4 = 17 + 12
=
+
.
Для их изучения определим числа an и bn при помощи равенства (1 +
)n = an + bn
, (n ≥ 0).
а) Выразите через an и bn число (1 –
)n.
б) Докажите равенство
в) Каким рекуррентным уравнениям удовлетворяют последовательности
{an} и {bn}?
г) Пользуясь пунктом а), найдите формулы n-го члена для
последовательностей {an} и {bn}.
д) Найдите связь между числами an, bn и подходящими дробями к числу
.
|
|
Сложность: 4- Классы: 10,11
|
Разложите функции
и
(n ≥ 1) в цепные дроби.
Определения многочленов Фибоначчи Fn(x) и Люка Ln(x) смотри, например, здесь.
|
|
Сложность: 4- Классы: 10,11
|
Получите формулу для многочленов Фибоначчи и Люка, аналогичную формуле Бине (см. задачи 60578 и 60587).
Определения многочленов Фибоначчи и Люка смотри здесь.
Страница:
<< 28 29 30 31
32 33 34 >> [Всего задач: 694]