Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 133]
|
|
Сложность: 4- Классы: 9,10
|
Дана такая возрастающая бесконечная последовательность натуральных чисел
a1, ...,
an, ..., что каждый её член является либо средним арифметическим, либо средним геометрическим двух соседних. Обязательно ли с некоторого момента эта последовательность становится либо арифметической, либо геометрической прогрессией?
|
|
Сложность: 4 Классы: 10,11
|
Дано 16 кубов с длинами рёбер соответственно 1, 2, ..., 16. Разделите их на две группы так, чтобы в обеих группах были равны суммарные объёмы, суммы площадей боковых поверхностей, суммы длин рёбер и количество кубов.
|
|
Сложность: 4 Классы: 9,10,11
|
15 простых натуральных чисел образуют возрастающую арифметическую прогрессию.
Докажите, что разность этой прогрессии больше 30000.
|
|
Сложность: 4 Классы: 9,10,11
|
Из последовательности a, a + d, a + 2d, a + 3d, ..., являющейся бесконечной арифметической прогрессией, где d не равно 0, тогда и только тогда можно выбрать подпоследовательность, являющуюся бесконечной геометрической прогрессией, когда отношение a/d рационально. Докажите это.
|
|
Сложность: 4 Классы: 10,11
|
Расположить на прямой систему отрезков длины 1, не имеющих общих концов и
общих точек так, чтобы бесконечная арифметическая прогрессия с любой разностью
и любым начальным членом имела общую точку с некоторым отрезком системы.
Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 133]