Версия для печати
Убрать все задачи
В вершинах шестиугольника записаны числа 12, 1, 10, 6, 8, 3 (в таком порядке). За один ход разрешено выбрать две соседние вершины и к числам, стоящим в данных вершинах, одновременно прибавить единицу или одновременно вычесть из них единицу. Можно ли получить в итоге шесть чисел в таком порядке:
а) 14, 6, 13, 4, 5, 2; б) 6, 17, 14, 3, 15, 2?

Решение
а) Двое играют в такую игру: на столе лежат 7 монет по два фунта и 7 монет по одному фунту. За ход разрешается взять монет на сумму не более трех фунтов. Забравший последнюю монету выигрывает. Кто победит при правильной игре?
б) Тот же вопрос, если и тех, и других монет - по 12.


Решение
Учащиеся 57-й школы решили провести чемпионат по мини-футболу. Так как ворота на школьном дворе разного размера, то игроки хотят составить расписание игр так, чтобы:
1) Каждая команда сыграла с каждой ровно по одному разу.
2) Каждая команда чередовала свои игры – то на плохой стороне, то
на хорошей стороне двора.
а) Удастся ли это сделать, если в турнире принимают участие
10 команд?
б) Можно ли при этом составить расписание так, чтобы
каждый день каждая команда играла ровно одну игру?

Решение