Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 144]
|
|
Сложность: 4- Классы: 10,11
|
Две хоккейные команды одинаковой силы договорились, что будут играть до тех пор, пока суммарный счёт не достигнет 10.
Найдите математическое ожидание числа моментов, когда наступала ничья.
|
|
Сложность: 4- Классы: 8,9,10,11
|
Поля шахматной доски пронумерованы по строкам сверху вниз числами от 1 до 64.
На доску случайным образом поставлено шесть ладей, которые не бьют друг друга (одна из возможных расстановок показана на рисунке). Найдите математическое ожидание суммы номеров полей, занятых ладьями.
|
|
Сложность: 4- Классы: 8,9,10,11
|
Преподаватель кружка по теории вероятностей откинулся в кресле и посмотрел на экран. Список записавшихся готов. Всего получилось n человек. Только они пока не по алфавиту, а в случайном порядке, в каком они приходили на занятие.
"Надо отсортировать их в алфавитном порядке, – подумал преподаватель. – Пойду по порядку сверху вниз, и, если нужно,
буду переставлять фамилию ученика вверх в подходящее место. Каждую фамилию придётся переставить не более одного раза".
Докажите, что математическое ожидание числа фамилий, которые не придётся переставлять, равно 1 + ½ + ⅓ + ... + 1/n.
В одном пакетике два пирожка с капустой, в другом два с вишней, в третьем – один с капустой и один с вишней. Выглядят и весят пирожки одинаково, так что неизвестно, какой с чем. Внуку в школу нужно дать один пирожок. Бабушка хочет дать пирожок с вишней, но она сама запуталась в своих пирожках и определить начинку может, только надломив пирожок. Надломленный пирожок внук не хочет, он хочет целый.
а) Покажите, что бабушка может действовать так, что вероятность дать внуку целый пирожок с вишней будет равна ⅔.
б) Существует ли стратегия, при которой вероятность дать внуку целый пирожок с вишней выше чем ⅔?
|
|
Сложность: 4- Классы: 9,10,11
|
У одного островного племени есть обычай – во время ритуального танца шаман подбрасывает высоко вверх три тонких прямых прута одинаковой длины, связанных в подобие буквы П. Соседние прутья связаны короткой ниткой и поэтому свободно вращаются друг относительно друга. Прутья падают на песок, образуя случайную фигуру. Если получается самопересечение (первый и третий прутья перекрещиваются), то племя в наступающем году ждут неурожаи и всякие неприятности. Если же самопересечения нет, то год будет удачным – сытным и счастливым. Найдите вероятность того, что на 2017 год прутья напророчат удачу.
Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 144]