ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 107]      



Задача 65287

Темы:   [ Дискретное распределение ]
[ Средние величины ]
Сложность: 3+
Классы: 8,9,10,11

По условиям шахматного матча победителем объявляется тот, кто опередил соперника на две победы. Ничьи в счет не идут. Вероятности выигрыша у соперников одинаковы. Число результативных партий в таком матче – величина случайная. Найдите её математическое ожидание.

Прислать комментарий     Решение

Задача 65288

Тема:   [ Дискретное распределение ]
Сложность: 3+
Классы: 8,9,10,11

В соревнованиях по пиханию животами шансы противников на победу относятся так же, как массы их тел. Юмбо весит больше Джумбо, а Пинк весит меньше Бонка. Ничьей в поединке быть не может. Юмбо и Джумбо по очереди должны пихаться с Пинком и Бонком. Какое из событий более вероятно:
A = {Юмбо победит только Пинка, а Джумбо – только Бонка}  или  B = {Юмбо победит только Бонка, а Джумбо – только Пинка}?

Прислать комментарий     Решение

Задача 65289

Темы:   [ Дискретное распределение ]
[ Сочетания и размещения ]
[ Числа Фибоначчи ]
Сложность: 3+
Классы: 8,9,10,11

Монету бросают 10 раз. Найдите вероятность того, что ни разу не выпадут два орла подряд.

Прислать комментарий     Решение

Задача 65295

Темы:   [ Дискретное распределение ]
[ Средние величины ]
Сложность: 3+
Классы: 9,10,11

Игральную кость бросают шесть раз. Найдите математическое ожидание числа различных выпавших граней.

Прислать комментарий     Решение

Задача 65296

Темы:   [ Дискретное распределение ]
[ Условная вероятность ]
[ Линейные рекуррентные соотношения ]
[ Четность и нечетность ]
[ Линейные неравенства и системы неравенств ]
Сложность: 3+
Классы: 8,9,10,11

На клавиатуре калькулятора есть цифры от 0 до 9 и знаки двух действий (см. рисунок). Вначале на дисплее написано число 0. Можно нажимать любые клавиши. Калькулятор выполняет действия в последовательности нажатий. Если знак действия нажать подряд несколько раз, то калькулятор запомнит только последнее нажатие.
  а) Кнопка со знаком умножения сломалась и не работает. Рассеянный Учёный нажал несколько кнопок в случайной последовательности. Какой результат получившейся цепочки действий более вероятен – чётное число или нечётное?
  б) Решите предыдущую задачу, если кнопку со знаком умножения починили.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 107]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .