Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 107]
|
|
Сложность: 3+ Классы: 9,10,11
|
Игральную кость бросают раз за разом. Обозначим через Pn вероятность того, что в какой-то момент сумма очков, выпавших при всех
сделанных бросках, равна n. Докажите, что при n ≥ 7 верно равенство Pn = ⅙ (Pn–1 + Pn–2 + ... + Pn–6).
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Вероятность того, что купленная лампочка будет работать, равна 0,95.
Сколько нужно купить лампочек, чтобы с вероятностью 0,99 среди них было не менее пяти работающих?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
У охотника есть две собаки. Однажды, заблудившись в лесу, он вышел на развилку. Охотник знает, что каждая из собак с вероятностью p выберет дорогу домой. Он решил выпустить собак по очереди. Если обе выберут одну и ту же дорогу, он пойдёт за ними; если же они разделятся, охотник выберет дорогу, кинув монетку. Увеличит ли таким способом охотник свои шансы выбрать дорогу домой, по сравнению с тем, как если бы у него была одна собака?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В ящике 2009 носков – синих и красных. Может ли синих носков быть столько, чтобы вероятность вытащить наудачу два носка одного цвета была равна 0,5?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Ася и Вася вырезают прямоугольники из клетчатой бумаги. Вася ленивый; он кидает игральную кость один раз и вырезает квадрат, сторона которого равна выпавшему числу очков. Ася кидает кость дважды и вырезает прямоугольник с длиной и шириной, равными выпавшим числам. У кого математическое ожидание площади прямоугольника больше?
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 107]