ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 4204]      



Задача 102718

Тема:   [ Метод координат на плоскости ]
Сложность: 2+
Классы: 8,9

Найдите координаты вершин треугольника, стороны которого лежат на прямых 2x + y - 6 = 0, x - y + 4 = 0 и y + 1 = 0.

Прислать комментарий     Решение


Задача 108543

Темы:   [ Метод координат на плоскости ]
[ Окружности (прочее) ]
Сложность: 2+
Классы: 8,9,10

Даны точки A(0;0), B(- 2;1), C(3;3), D(2; - 1) и окружность (x - 1)2 + (y + 3)2 = 25. Выясните, где расположены эти точки: на окружности, внутри или вне окружности.

Прислать комментарий     Решение


Задача 110920

Темы:   [ Принцип Дирихле (прочее) ]
[ Перебор случаев ]
Сложность: 2+
Классы: 6,7,8

У Пети в кармане несколько монет. Если Петя наугад вытащит из кармана 3 монеты, среди них обязательно найдётся монета "1 рубль". Если Петя наугад вытащит 4 монеты из кармана, среди них обязательно найдётся монета "2 рубля". Петя вытащил из кармана 5 монет. Назовите эти монеты.
Прислать комментарий     Решение


Задача 116084

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Четырехугольники (прочее) ]
Сложность: 2+
Классы: 10,11

Существуют ли два таких четырехугольника, что стороны первого меньше соответствующих сторон второго, а соответствующие диагонали больше?
Прислать комментарий     Решение


Задача 116220

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Арифметическая прогрессия ]
Сложность: 2+
Классы: 10,11

Существует ли арифметическая прогрессия из 2011 натуральных чисел, в которой количество чисел, делящихся на 8, меньше, чем количество чисел, делящихся на 9, а последнее, в свою очередь, меньше, чем количество чисел, делящихся на 10?

Прислать комментарий     Решение

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 4204]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .