Страница:
<< 24 25 26 27
28 29 30 >> [Всего задач: 288]
|
|
Сложность: 3 Классы: 7,8,9
|
У Ивана-царевича есть два волшебных меча. Первым он может отрубить Змею
Горынычу 21 голову. Вторым – 4 головы, но при этом у Змея Горыныча
отрастает 2006 голов. Может ли Иван отрубить Змею Горынычу все головы, если в
самом начале у него было 100 голов? (Если, например, у Змея Горыныча осталось лишь три головы, то рубить их ни тем, ни другим мечом нельзя.)
|
|
Сложность: 3 Классы: 7,8,9
|
На столе стоят 13 перевёрнутых стаканов. Разрешается одновременно переворачивать любые два стакана.
Можно ли добиться того, чтобы все стаканы стояли правильно?
|
|
Сложность: 3 Классы: 7,8,9
|
В коробке лежат 2011 белых и 2012 чёрных шаров. Наугад вытаскиваются два шара. Если они одного цвета, то их выкидывают и кладут в коробку чёрный шар. Если они разного цвета, то выкидывают чёрный, а белый кладут обратно. Процесс продолжается до тех пор, пока в коробке не останется один шар. Какого он цвета?
По кругу стоит 101 мудрец. Каждый из них либо считает, что Земля вращается вокруг Юпитера, либо считает, что Юпитер вращается вокруг Земли. Один раз
в минуту все мудрецы одновременно оглашают свои мнения. Сразу после этого каждый мудрец, оба соседа которого думают иначе, чем он, меняет своё мнение, а остальные – не меняют. Докажите, что через некоторое время мнения перестанут меняться.
От пирога, имеющего форму выпуклого многоугольника, разрешается
отрезать треугольный кусок ABC, где A - некоторая вершина, а B и C
- точки, лежащие строго внутри сторон, имеющих вершину A.
Вначале пирог имеет форму квадрата. В центре этого квадрата
расположена изюминка. Докажите, что ни на каком шаге от пирога
нельзя отрезать кусок, содержащий изюминку.
Страница:
<< 24 25 26 27
28 29 30 >> [Всего задач: 288]