ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 53]      



Задача 61321

Темы:   [ Иррациональные уравнения ]
[ Методы решения задач с параметром ]
Сложность: 3+
Классы: 8,9,10,11

Решите уравнение $ \sqrt{a+\sqrt{a+\sqrt{a+x}}}$ = x.

Прислать комментарий     Решение

Задача 109912

Темы:   [ Характеристические свойства и рекуррентные соотношения ]
[ Методы решения задач с параметром ]
Сложность: 4-
Классы: 10,11

Для каких α существует функция f : , отличная от константы, такая, что

f(α(x+y))=f(x)+f(y);?

Прислать комментарий     Решение

Задача 60972

Темы:   [ Теорема Безу. Разложение на множители ]
[ Методы решения задач с параметром ]
Сложность: 4-
Классы: 8,9,10,11

Найдите необходимое и достаточное условие для того, чтобы выражение  x³ + y³ + z³ + kxyz  делилось на  x + y + z.

Прислать комментарий     Решение

Задача 76453

Темы:   [ Иррациональные уравнения ]
[ Методы решения задач с параметром ]
[ Квадратные уравнения и системы уравнений ]
[ Симметрические системы. Инволютивные преобразования ]
Сложность: 4-
Классы: 9,10,11

Решить уравнение   = x.

Прислать комментарий     Решение

Задача 109177

Темы:   [ Тригонометрические уравнения ]
[ Методы решения задач с параметром ]
[ Исследование квадратного трехчлена ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 9,10,11

Доказать, что каковы бы ни были числа a, b, c, по крайней мере одно из уравнений
    a sin x + b cos x + c = 0,   2a tg x + b ctg x + 2c = 0
имеет решение.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 53]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .