ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 606]      



Задача 116396

Темы:   [ Арифметика остатков (прочее) ]
[ Индукция (прочее) ]
Сложность: 4+
Классы: 10,11

Докажите, что при  n > 1  число   11 + 3³ + ... + (2n – 1)2n – 1   делится на 2n, но не делится на 2n+1.

Прислать комментарий     Решение

Задача 30685

Тема:   [ Малая теорема Ферма ]
Сложность: 4+
Классы: 9,10

а) Пусть p – простое число, отличное от 3. Докажите, что число 1...1 (p единиц) не делится на p.

б) Пусть  p > 5  – простое число. Докажите, что число 1...1  (p – 1  единица) делится на p.

Прислать комментарий     Решение

Задача 78761

Темы:   [ Деление с остатком ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 5-
Классы: 10,11

Имеется натуральное число  n > 1970.  Возьмём остатки от деления числа 2n на 2, 3, 4, ..., n. Доказать, что сумма этих остатков больше 2n.

Прислать комментарий     Решение

Задача 107998

Темы:   [ Деление с остатком ]
[ Индукция (прочее) ]
[ Монотонность и ограниченность ]
Сложность: 5-
Классы: 9,10,11

В ящиках лежат камни. За один ход выбирается число k, затем камни в ящиках делятся на группы по k штук и остаток менее, чем из k штук. Оставляют по одному камню из каждой группы и весь остаток. Можно ли за пять ходов добиться, чтобы в ящиках осталось ровно по одному камню, если в каждом из них
  а) не более 460 камней;
  б) не более 461 камня?
Прислать комментарий     Решение


Задача 67163

Темы:   [ Арифметика остатков (прочее) ]
[ Арифметическая прогрессия ]
Сложность: 5
Классы: 8,9,10,11

В бесконечной арифметической прогрессии, где все числа натуральные, нашлись два числа с одинаковой суммой цифр. Обязательно ли в ней найдётся ещё одно число с такой же суммой цифр?
Прислать комментарий     Решение


Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 606]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .