ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Сказка о мертвой царевне и семи богатырях. Как-то раз, возвратившись вечером домой, богатыри отдали царевне добычу — 29 серых уток. Каждый брат застрелил хотя бы одну утку. Все добыли по разному числу уток: чем брат был старше, тем больше дичи он застрелил. Какова добыча старшего брата? ![]() ![]() Пусть характеристическое уравнение ( 11.3) последовательности {an} имеет два различных корня x1 и x2. Докажите, что при фиксированных a0, a1 существует ровно одна пара чисел c1, c2 такая, что
an = c1x1n + c2x2n (n = 0, 1, 2,...).
![]() ![]() |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 398]
Маляр-хамелеон ходит по клетчатой доске как хромая ладья (на одну клетку по вертикали или горизонтали). Попав в очередную клетку, он либо перекрашивается в её цвет, либо перекрашивает клетку в свой цвет. Белого маляра-хамелеона кладут на чёрную доску размером 8×8 клеток. Сможет ли он раскрасить её в шахматном порядке?
Солдаты построены в две шеренги по n человек, так что каждый солдат из первой шеренги не выше стоящего за ним солдата из второй шеренги. В шеренгах солдат выстроили по росту. Докажите, что после этого каждый солдат из первой шеренги также будет не выше стоящего за ним солдата из второй шеренги.
На контрольной работе учитель дал пять задач и ставил за контрольную оценку, равную количеству решённых задач. Все ученики, кроме Пети, решили одинаковое число задач, а Петя – на одну больше. Первую задачу решили 9 человек, вторую – 7 человек, третью – 5 человек, четвёртую – 3 человека, пятую – один человек. Сколько четвёрок и пятерок было получено на контрольной?
Даны два треугольника. Сумма двух углов первого треугольника равна некоторому углу второго. Сумма другой пары углов первого треугольника также равна некоторому углу второго. Верно ли, что первый треугольник – равнобедренный?
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 398] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |