ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дан произвольный треугольник ABC и такая прямая l, пересекающая треугольник, что расстояние от неё до точки A равно сумме расстояний до этой прямой от точек B и C (причем B и C лежат по одну сторону от l). Доказать, что все такие прямые проходят через одну точку. ![]() ![]() На какое максимальное число частей могут разбить координатную плоскость xOy графики 100 квадратных трехчлёнов вида ![]() ![]() ![]() Прибор для сравнения чисел logab и logcd (a, b, c, d > 1) работает по правилам: если b > a и d > c, то он переходит к сравнению чисел logab/a и logcd/c
если b < a и d < c, то он переходит к сравнению чисел logdc и logba; если (b − a)(d − c) ≤ 0, то он выдаёт ответ. ![]() ![]() ![]() Вписанная окружность касается сторон треугольника ABC в точках A1, B1 и C1; точки A2, B2 и C2 симметричны этим точкам относительно биссектрис соответствующих углов треугольника. Докажите, что A2B2 || AB и прямые AA2, BB2 и CC2 пересекаются в одной точке. ![]() ![]() ![]() Система точек, соединённых отрезками, называется "связной", если из каждой точки можно пройти в любую другую по этим отрезкам. Можно ли соединить пять точек в связную систему так, чтобы при стирании любого отрезка образовались ровно две связные системы точек, не связанные друг с другом? (Мы считаем, что в местах пересечения отрезков переход с одного из них на другой невозможен.) ![]() ![]() |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 240]
Прямая, проходящая через вершину A треугольника ABC, пересекает сторону BC в точке M, причём BM = AB.
BK – биссектриса треугольника ABC. Известно, что ∠AKB : ∠CKB = 4 : 5. Найдите разность углов A и C треугольника ABC.
В треугольнике DEF проведена медиана DK. Найдите углы треугольника, если ∠KDE = 70°, ∠DKF = 140°.
Дан квадрат ABCD. На стороне AD внутрь квадрата построен равносторонний треугольник ADE. Диагональ AC пересекает сторону ED этого треугольника в точке F. Докажите, что CE = CF.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 240] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |