Страница:
<< 33 34 35 36
37 38 39 >> [Всего задач: 239]
Середину более длинной боковой стороны прямоугольной трапеции соединили с вершинами трапеции. При этом трапеция разделилась на три равнобедренных треугольника. Найдите величину острого угла трапеции.
На сторонах AB и BC равностороннего треугольника ABC
отмечены точки L и K соответственно, M – точка пересечения отрезков AK и CL. Известно, что площадь треугольника AMC равна площади четырёхугольника LBKM. Найдите угол AMC.
|
|
Сложность: 3+ Классы: 7,8,9
|
a1, a2, a3, a4, a5, a6 – последовательные стороны шестиугольника, все углы которого равны. Докажите, что a1 – a4 = a3 – a6 = a5 – a2.
Биссектриса угла C треугольника ABC делит сторону AB на
отрезки, равные a и b (a > b). Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.
Высота прямоугольного треугольника, проведённая из вершины прямого угла, равна a и образует угол α с медианой, проведённой из той же вершины. Найдите катеты треугольника.
Страница:
<< 33 34 35 36
37 38 39 >> [Всего задач: 239]