ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 239]      



Задача 53465

Темы:   [ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Медиана, проведенная к гипотенузе ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 8,9

Острый угол прямоугольного треугольника равен 30°. Докажите, что высота и медиана, проведённые из вершины прямого угла, делят прямой угол на три равные части.

Прислать комментарий     Решение

Задача 65171

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Площадь круга, сектора и сегмента ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 9,10,11

Дан треугольник со сторонами 3, 4 и 5. Построены три круга радиусами 1 с центрами в вершинах треугольника.
Найдите суммарную площадь частей кругов, заключённых внутри треугольника.

Прислать комментарий     Решение

Задача 65660

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Перебор случаев ]
Сложность: 3
Классы: 7,8,9

Про треугольник, один из углов которого равен 120°, известно, что его можно разрезать на два равнобедренных треугольника.
Чему могут быть равны два других угла исходного треугольника?

Прислать комментарий     Решение

Задача 108611

Темы:   [ Неравенства для элементов треугольника. ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 8,9

Пусть a, b, c – длины сторон BC, AC, AB треугольника ABC,  γ = ∠C.  Докажите, что  c ≥ (a + b) sin γ/2.

Прислать комментарий     Решение

Задача 108937

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 8,9

Отрезки AM и BH – соответственно медиана и высота остроугольного треугольника ABC. Известно, что  AH = 1  и  2∠MAC = ∠MCA.  Найдите сторону BC.

Прислать комментарий     Решение

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 239]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .