Страница:
<< 42 43 44 45 46 47 48 [Всего задач: 239]
|
|
Сложность: 4 Классы: 8,9,10
|
В треугольнике ABC проведена биссектриса BB1.
Перпендикуляр, опущенный из точки B1 на BC, пересекает дугу BC описанной окружности треугольника ABC в точке K.
Перпендикуляр опущенный из точки B на AK пересекает AC в точке L. Докажите что точки K, L и середина дуги AC (не содержащей точку B) лежат на одной прямой.
Пусть O – центр описанной окружности ω остроугольного треугольника ABC. Окружность ω1 с центром K проходит через точки A, O и C и пересекает стороны AB и BC в точках M и N. Известно, что точки L и K симметричны относительно прямой MN. Докажите, что BL ⊥ AC.
|
|
Сложность: 4+ Классы: 10,11
|
На плоскости даны две точки A и B. Пусть C – некоторая точка плоскости, равноудалённая от точек A и B. Построим последовательность точек
C1 = C, C2, C3, ..., где Cn+1 – центр описанной окружности треугольника ABCn. При каком положении точки C
а) точка Cn попадёт в середину отрезка AB (при этом Cn+1 и дальнейшие члены последовательности не определены)?
б) точка Cn совпадает с C?
|
|
Сложность: 4- Классы: 9,10
|
В треугольнике ABC O – центр описанной окружности, H – ортоцентр. Через середину OH параллельно BC проведена прямая, пересекающая стороны AB и AC в точках D и E. Оказалось, что O – центр вписанной окружности треугольника ADE. Найдите углы треугольника ABC.
Страница:
<< 42 43 44 45 46 47 48 [Всего задач: 239]