Страница:
<< 37 38 39 40
41 42 43 >> [Всего задач: 239]
На продолжениях оснований AD и BC трапеции ABCD за точки A и C взяты точки K и L. Отрезок KL
пересекает стороны AB и CD в точках M и N, а диагонали
AC и BD в точках O и P. Докажите, что если KM = NL, то KO = PL.
|
|
Сложность: 4- Классы: 9,10,11
|
В равнобедренном треугольнике ABC с основанием BC
угол при вершине A равен 80°. Внутри треугольника ABC
взята точка M так, что
∠MBC = 30° и ∠MCB = 10°. Найдите величину угла AMC.
|
|
Сложность: 4- Классы: 8,9,10,11
|
Дан вписанный четырехугольник $ABCD$. На сторонах $AD$ и $CD$ взяты точки $E$ и $F$ так, что $AE=BC$ и $AB=CF$. Пусть $M$ – середина $EF$. Докажите, что угол $AMC$ прямой.
На плоскости даны две пересекающиеся окружности. Точка A – одна из двух точек пересечения. В каждой окружности проведён диаметр, параллельный касательной в точке A к другой окружности, причём эти диаметры не пересекаются. Докажите, что концы этих диаметров лежат на одной окружности.
Дан вписанный четырёхугольник ABCD, в котором ∠ABC + ∠ABD = 90°. На диагонали BD отмечена точка E, причём BE = AD. Из неё на сторону AB опущен перпендикуляр EF. Докажите, что CD + EF < AC.
Страница:
<< 37 38 39 40
41 42 43 >> [Всего задач: 239]