Страница:
<< 52 53 54 55 56 57 58 [Всего задач: 290]
|
|
Сложность: 4 Классы: 8,9,10
|
Среди всех треугольников, вписанных в данную окружность, найдите тот,
у которого максимальна сумма квадратов длин сторон.
|
|
Сложность: 5+ Классы: 9,10,11
|
На плоскости отметили 4n точек, после чего соединили отрезками все пары точек, расстояние между которыми равно 1 см. Оказалось, что среди любых n + 1 точек обязательно есть две, соединённые отрезком. Докажите, что всего проведено не менее 7n отрезков.
Четырёхугольник ABCD вписан в окружность с центром O, ∠BOA = ∠COD = 60°. Перпендикуляр BK, опущенный
на сторону AD, равен 6; AD = 3BC.
Найдите площадь треугольника COD.
Дан выпуклый четырёхугольник
ABMC , в котором
AB=BC ,
BAM = 30
o ,
ACM=
150
o . Докажите, что
AM – биссектриса
угла
BMC .
|
|
Сложность: 5- Классы: 8,9,10
|
В четырёхугольнике ABCD стороны AB, BC и CD равны,
M – середина стороны AD. Известно, что ∠BMC = 90°.
Найдите угол между диагоналями четырёхугольника ABCD.
Страница:
<< 52 53 54 55 56 57 58 [Всего задач: 290]