Страница:
<< 51 52 53 54
55 56 57 >> [Всего задач: 290]
Точки P и Q лежат на сторонах соответственно BC и CD квадрата ABCD, причём треугольник APQ – равносторонний. Прямая, проходящая через точку P перпендикулярно стороне AQ, пересекает AD в точке E. Точка F расположена вне треугольника APQ, причём треугольники PQF и AQE равны.
Докажите, что FE = 2FC.
Точка E лежит на стороне AC правильного треугольника ABC, K – середина отрезка AE. Прямая, проходящая через точку E перпендикулярно прямой AB, и прямая, проходящая через точку C перпендикулярно прямой BC, пересекаются в точке D. Найдите углы треугольника BKD.
На боковых сторонах AB и AC равнобедренного треугольника ABC отметили точки K и L соответственно так, что AK = CL и ∠ALK + ∠LKB = 60°.
Докажите, что KL = BC.
На сторонах AB, AC, BC равностороннего треугольника ABC, сторона которого равна 2, выбрали точки C1, B1, A1 соответственно.
Какое наибольшее значение может принимать сумма радиусов окружностей, вписанных в треугольники AB1C1, A1BC1, A1B1C.
Три прямые проходят через точку O и образуют попарно углы
в
60o. Из произвольной точки M, отличной от O, опущены
перпендикуляры на эти прямые. Докажите, что основания перпендикуляров
являются вершинами правильного треугольника.
Страница:
<< 51 52 53 54
55 56 57 >> [Всего задач: 290]