ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 68 69 70 71 72 73 74 >> [Всего задач: 448]      



Задача 52835

Темы:   [ Вспомогательная окружность ]
[ Теорема косинусов ]
Сложность: 4+
Классы: 8,9

В треугольнике ABC на стороне BC взята точка M, причём BM = 2MC и $ \angle$AMB = 60o. Зная, что $ \angle$BAC = 60o, найдите углы B и C треугольника ABC.

Прислать комментарий     Решение


Задача 53047

Темы:   [ Касающиеся окружности ]
[ Теорема косинусов ]
[ Неравенство треугольника (прочее) ]
Сложность: 4+
Классы: 8,9

На сторонах AB и AC угла BAC, равного 120o, как на диаметрах построены полуокружности. В общую часть образовавшихся полукругов вписана окружность максимального радиуса. Найдите радиус этой окружности, если AB = 4, AC = 2.

Прислать комментарий     Решение


Задача 53877

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Теорема косинусов ]
[ Четырехугольник: вычисления, метрические соотношения. ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 4+
Классы: 8,9

В трапеции основания равны a и b, диагонали перпендикулярны, а угол между боковыми сторонами равен $ \alpha$. Найдите площадь трапеции.

Прислать комментарий     Решение


Задача 54652

Темы:   [ Построения с помощью вычислений ]
[ Теорема косинусов ]
Сложность: 4+
Классы: 8,9

Даны отрезки a и b. Постройте отрезок x, равный $ \sqrt[4]{a^{4} + b^{4}}$.

Прислать комментарий     Решение


Задача 54792

Темы:   [ Две касательные, проведенные из одной точки ]
[ Теорема косинусов ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4+
Классы: 8,9

На стороне треугольника взяты четыре точки K, P, H и M, являющиеся соответственно серединой этой стороны, основанием биссектрисы противоположного угла треугольника, точкой касания с этой стороной вписанной в треугольник окружности и основанием соответствующей высоты. Найдите KH, если KP = a, KM = b.

Прислать комментарий     Решение


Страница: << 68 69 70 71 72 73 74 >> [Всего задач: 448]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .