ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 4]      



Задача 67241

Темы:   [ Прямая Гаусса ]
[ Аффинная геометрия (прочее) ]
[ Радикальная ось ]
Сложность: 6
Классы: 9,10,11

Автор: Галяпин Г.

В треугольнике $ABC$ вписанная окружность $\omega$ с центром $I$ касается $BC$ в точке $D$. Точка $P$ – проекция ортоцентра треугольника $ABC$ на медиану из вершины $A$. Докажите, что окружности $AIP$ и $\omega$ высекают на $AD$ равные отрезки
Прислать комментарий     Решение


Задача 116340

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки подобия ]
[ Центр масс ]
[ Аффинная геометрия (прочее) ]
Сложность: 3-
Классы: 8,9,10

На стороне BC и на продолжении стороны AB за вершину B треугольника ABC расположены точки M и K соответственно, причём  BM : MC = 4 : 5  и  BK : AB = 1 : 5.  Прямая KM пересекает сторону AC в точке N. Найдите отношение  CN : AN.

Прислать комментарий     Решение

Задача 105188

Темы:   [ Cкрещивающиеся прямые, угол между ними ]
[ Проектирование помогает решить задачу ]
[ Параллельное проектирование (прочее) ]
[ Малые шевеления ]
[ Аффинная геометрия (прочее) ]
Сложность: 6
Классы: 10,11

Верно ли, что для любых четырёх попарно скрещивающихся прямых можно так выбрать по одной точке на каждой из них, чтобы эти точки были вершинами а) трапеции, б) параллелограмма?
Прислать комментарий     Решение


Задача 86117

Темы:   [ Индукция в геометрии ]
[ Раскраски ]
[ Теория игр (прочее) ]
[ Простые числа и их свойства ]
[ Деление с остатком ]
[ Системы точек и отрезков. Примеры и контрпримеры ]
[ Аффинная геометрия (прочее) ]
Сложность: 5-
Классы: 9,10,11

В пространстве даны 200 точек. Каждые две из них соединены отрезком, причём отрезки не пересекаются друг с другом. Первый игрок красит каждый отрезок в один из k цветов, затем второй игрок красит в один из тех же цветов каждую точку. Если найдутся две точки и отрезок между ними, окрашенные в один цвет, выигрывает первый игрок, в противном случае второй. Докажите, что первый может гарантировать себе выигрыш, если
  а)  k = 7;   б)  k = 10.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .