ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В пруд пустили 30 щук, которые постепенно поедают друг друга. Щука считается сытой, если она съела не менее трёх щук (сытых или голодных). Какое наибольшее число щук может насытиться?

   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 16]      



Задача 58454

Тема:   [ Применение проективных преобразований прямой в задачах на доказательство ]
Сложность: 6+
Классы: 10,11

На стороне AB четырехугольника ABCD взята точка M1. Пусть M2 — проекция M1 на прямую BC из D, M3 — проекция M2 на CD из A, M4 — проекция M3 на DA из B, M5 — проекция M4 на AB из C и т. д. Докажите, что M13 = M1 (а значит, M14 = M2, M15 = M3 и т. д.).
Прислать комментарий     Решение


Задача 58455

Тема:   [ Применение проективных преобразований прямой в задачах на доказательство ]
Сложность: 6+
Классы: 10,11

Используя проективные преобразования прямой, докажите теорему о полном четырехстороннике (задача 30.34).
Прислать комментарий     Решение


Задача 58456

Тема:   [ Применение проективных преобразований прямой в задачах на доказательство ]
Сложность: 6+
Классы: 10,11

Используя проективные преобразования прямой, докажите теорему Паппа (задача 30.27).
Прислать комментарий     Решение


Задача 58457

Тема:   [ Применение проективных преобразований прямой в задачах на доказательство ]
Сложность: 6+
Классы: 10,11

Используя проективные преобразования прямой, решите задачу о бабочке (задача 30.44).
Прислать комментарий     Решение


Задача 58458

Тема:   [ Применение проективных преобразований прямой в задачах на доказательство ]
Сложность: 6+
Классы: 10,11

Точки A, B, C, D, E, F лежат на одной окружности. Докажите, что точки пересечения прямых AB и DE, BC и EF, CD и FA лежат на одной прямой (Паскаль).
Прислать комментарий     Решение


Страница: 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .