Страница:
<< 10 11 12 13 14 15
16 >> [Всего задач: 79]
|
|
Сложность: 5+ Классы: 8,9,10,11
|
Дан многоугольник на плоскости, невыпуклый и несамопересекающийся. Д
– множество точек, принадлежащих тем диагоналям многоугольника, которые не
вылезают за его пределы (то есть лежат либо целиком внутри, либо частью внутри,
частью на контуре). Концы этих диагоналей тоже включаются в Д.
Докажите, что любые две точки из Д можно соединить ломаной, целиком
принадлежащей Д.
|
|
Сложность: 6+ Классы: 10,11
|
а) Сумма длин рёбер любого выпуклого многогранника больше утроенного диаметра. Докажите это.
(Диаметром многогранника называют наибольшую из длин всевозможных отрезков с концами в вершинах многогранника.)
б) Для любых двух вершин A и B любого выпуклого многогранника существуют три ломаные, каждая из которых идёт по рёбрам многогранника из А в В и никакие две не проходят по одному ребру. Докажите это.
в) Если в выпуклом многограннике разрезать два ребра, то для любых двух его вершин А и В существует соединяющая эти две вершины ломаная, идущая по оставшимся рёбрам. Докажите это.
г) Докажите, что в задаче б) можно выбрать три ломаные, никакие две из которых не имеют общих вершин, за исключением точек А и В.
|
|
Сложность: 4- Классы: 9,10,11
|
Внутри параболы y = x² расположены несовпадающие окружности ω1, ω2, ω3, ... так, что при каждом n > 1 окружность ωn касается ветвей параболы и внешним образом окружности ωn–1 (см. рис.). Найдите радиус окружности σ1998, если известно, что диаметр ω1 равен 1 и она касается параболы в её вершине.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Единичный квадрат разбит на конечное число квадратиков (размеры которых могут
различаться). Может ли сумма периметров квадратиков, пересекающихся с главной
диагональю, быть больше 1993? (Если квадратик пересекается с диагональю по одной точке, это тоже считается пересечением.)
|
|
Сложность: 5 Классы: 10,11
|
На плоскости нарисованы неравнобедренный треугольник ABC и вписанная в него окружность ω. Пользуясь только линейкой и проведя не более восьми линий, постройте на ω такие точки A′, B′, C′, что лучи B′C′, C′A′, A′B′ проходят через A, B, C соответственно.
Страница:
<< 10 11 12 13 14 15
16 >> [Всего задач: 79]