Страница:
<< 29 30 31 32
33 34 35 >> [Всего задач: 328]
|
|
Сложность: 5- Классы: 7,8,9
|
В бесконечной цепочке нервных клеток каждая может находиться в одном из двух состояний: «покой» и «возбуждение». Если в данный момент клетка возбудилась, то она посылает сигнал, который через единицу времени (скажем, через одну миллисекунду) доходит до обеих соседних с ней клеток. Каждая клетка возбуждается в том и только в том случае, если к ней приходит сигнал от одной из соседних клеток; если сигналы приходят одновременно с двух сторон, то они погашаются, и клетка не возбуждается. Например, если в начальной момент времени
t = 0 возбудить три соседние клетки, а остальные оставить в покое, то возбуждение будет распространяться так, как показано на рисунке.
Пусть в начальный момент времени возбуждена только одна клетка. Сколько клеток будет находится в возбужденном состоянии через 15 мсек? через 65 мсек? через 1000 мсек? вообще через t мсек?
Что будет в том случае, если цепочка не бесконечная, а состоит из N клеток, соединённых в окружность,— будет ли возбуждение поддерживаться бесконечно долго или затухнет?
|
|
Сложность: 5- Классы: 8,9,10
|
Дано:
$$ a_1=1,a_k=\left[\sqrt{a_1+a_2+\dots +a_{k-1}}\right].$$
Найти $a_{1000}$.
Примечание. $\left[A\right]$ — целая часть $A$.
|
|
Сложность: 5- Классы: 9,10,11
|
Дано:
Найти
a1966.
|
|
Сложность: 5- Классы: 8,9,10
|
Последовательности
(
an)
и
(
bn)
заданы условиями
a1=1
,
b1=2
,
an+1
= и
bn+1
= . Докажите, что
a2008
<5
.
|
|
Сложность: 5- Классы: 9,10,11
|
В ящиках лежат камни. За один ход выбирается число k, затем камни в ящиках делятся на группы по k штук и остаток менее, чем из k штук. Оставляют по одному камню из каждой группы и весь остаток. Можно ли за пять ходов добиться, чтобы в ящиках осталось ровно по одному камню, если в каждом из них
а) не более 460 камней;
б) не более 461 камня?
Страница:
<< 29 30 31 32
33 34 35 >> [Всего задач: 328]