ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 367]      



Задача 102879

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Принцип Дирихле (прочее) ]
Сложность: 3
Классы: 7,8,9

Какое максимальное число королей, не бьющих друг друга, можно расставить на шахматной доске 8×8?
Прислать комментарий     Решение


Задача 103819

Темы:   [ Теория алгоритмов (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 3
Классы: 7,8,9

В Мексике экологи добились принятия закона, по которому каждый автомобиль хотя бы один день в неделю не должен ездить (владелец сообщает полиции номер автомобиля и "выходной" день недели этого автомобиля). В некоторой семье все взрослые желают ездить ежедневно (каждый – по своим делам!). Сколько автомобилей (как минимум) должно быть в семье, если взрослых в ней
  а) 5 человек?  б) 8 человек?

Прислать комментарий     Решение

Задача 116435

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Принцип Дирихле (прочее) ]
[ Доказательство от противного ]
Сложность: 3
Классы: 9,10,11

Автор: Фольклор

На шахматной доске расставили n белых и n чёрных ладей так, чтобы ладьи разного цвета не били друг друга. Найдите наибольшее возможное значение n.

Прислать комментарий     Решение

Задача 116807

Темы:   [ Четырехугольник (неравенства) ]
[ Принцип Дирихле (прочее) ]
Сложность: 3
Классы: 8,9,10

Автор: Фольклор

Длина прямоугольного участка равна 4 метра, а ширина – 1 метр.
Можно ли посадить на нём три дерева так, чтобы расстояние между любыми двумя деревьями было не меньше чем 2,5 метра?

Прислать комментарий     Решение

Задача 30682

Темы:   [ Малая теорема Ферма ]
[ Принцип Дирихле (прочее) ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 9,10

Пусть p – простое число, и a не делится на p. Докажите, что найдется натуральное число b, для которого  ab ≡ 1 (mod p).

Прислать комментарий     Решение

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 367]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .