Страница:
<< 39 40 41 42
43 44 45 >> [Всего задач: 367]
|
|
Сложность: 4- Классы: 9,10
|
Дан кубический многочлен f(x). Назовём циклом такую тройку различных чисел (a, b, c), что f(a) = b, f(b) = c и f(c) = a. Известно, что нашлись восемь циклов (ai, bi, ci), i = 1, 2, ..., 8, в которых участвуют 24 различных числа. Докажите, что среди восьми чисел вида ai + bi + ci есть хотя бы три различных.
Некоторые клетки белого прямоугольника размером 3×7 произвольным образом покрасили в чёрный цвет. Докажите, что обязательно найдутся четыре клетки одного цвета, центры которых являются вершинами некоторого прямоугольника со сторонами, параллельными сторонам исходного прямоугольника.
|
|
Сложность: 4- Классы: 8,9,10,11
|
Паша выбрал 2017 (не обязательно различных) натуральных чисел a1, a2, ..., a2017 и играет сам с собой в следующую игру. Изначально у него есть неограниченный запас камней и 2017 больших пустых коробок. За один ход Паша добавляет в любую коробку (по своему выбору) a1 камней, в любую из оставшихся коробок (по своему выбору) – a2 камней, ..., наконец, в оставшуюся коробку – a2017 камней. Пашина цель – добиться того, чтобы после некоторого хода во всех коробках стало поровну камней. Мог ли он выбрать числа так, чтобы цели можно было добиться за 43 хода, но нельзя – за меньшее ненулевое число ходов?
В каждой клетке доски размером 5×5 стоит крестик или нолик, причём никакие три крестика не стоят подряд ни по горизонтали, ни по вертикали, ни по диагонали. Какое наибольшее количество крестиков может быть на доске?
|
|
Сложность: 4- Классы: 8,9,10
|
Сто гномов, веса которых равны 1, 2, 3, ..., 100 фунтов, собрались на левом берегу реки. Плавать они не умеют, но на этом же берегу находится гребная лодка грузоподъемностью 100 фунтов. Из-за течения плыть обратно трудно, поэтому у каждого гнома хватит сил грести с правого берега на левый не более одного раза (грести в лодке достаточно любому из гномов; гребец в течение одного рейса не меняется). Смогут ли все гномы переправиться на правый берег?
Страница:
<< 39 40 41 42
43 44 45 >> [Всего задач: 367]