Страница:
<< 25 26 27 28
29 30 31 >> [Всего задач: 222]
|
|
Сложность: 3 Классы: 10,11
|
Найдите геометрическое место точек, лежащих внутри куба и равноудалённых от
трёх скрещивающихся рёбер a, b, c этого куба.
В таблицу 29×29 вписали числа 1, 2, 3, ..., 29, каждое по 29 раз. Оказалось, что сумма чисел над главной диагональю в три раза больше суммы чисел под этой диагональю. Найдите число, вписанное в центральную клетку таблицы.
|
|
Сложность: 3+ Классы: 6,7,8
|
По кругу расставлены нули и единицы (и те и другие присутствуют). Каждое число,
у которого два соседа одинаковы, заменяют на ноль, а остальные числа – на единицы, и такую операцию проделывают несколько раз.
a) Могут ли все числа стать нулями, если их 13 штук?
б) Могут ли все числа стать единицами, если их 14 штук?
B cтаде 101 корова. Если увести любую одну, то оставшихся можно разделить на два стада по 50 коров в каждом, так что суммарный вес коров первого стада равен суммарному весу коров другого стада. Известно, что каждая корова весит целое число килограммов. Докажите, что все коровы весят одинаково.
|
|
Сложность: 3+ Классы: 7,8,9
|
В ряд записаны 20 различных натуральных чисел. Произведение каждых двух из них, стоящих подряд, является квадратом натурального числа. Первое число равно 42. Докажите, что хотя бы одно из чисел больше чем 16000.
Страница:
<< 25 26 27 28
29 30 31 >> [Всего задач: 222]