ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 222]      



Задача 65627

Темы:   [ Замощения костями домино и плитками ]
[ Доказательство от противного ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 5,6,7

Вася нарисовал карандашом разбиение клетчатого прямоугольника на прямоугольники размером 3×1 (тримино), закрасил ручкой центральную клетку каждого из получившихся прямоугольников, после чего стер карандашные линии. Всегда ли можно восстановить исходное разбиение?

Прислать комментарий     Решение

Задача 65839

Темы:   [ Процессы и операции ]
[ Четность и нечетность ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 8,9,10

Автор: Вялый М.Н.

Аня, Боря и Витя сидят по кругу за столом и едят орехи. Сначала все орехи у Ани. Она делит их поровну между Борей и Витей, а остаток (если он есть) съедает. Затем все повторяется: каждый следующий (по часовой стрелке) делит имеющиеся у него орехи поровну между соседями, а остаток съедает. Орехов много (больше 3). Докажите, что:
  a) хотя бы один орех будет съеден;
  б) все орехи не будут съедены.

Прислать комментарий     Решение

Задача 67017

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Примеры и контрпримеры. Конструкции ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

По доске $n$×$n$ прошла ладья, побывав в каждой клетке один раз, причем каждый её ход был ровно на одну клетку. Клетки занумерованы от 1 до $n^2$ в порядке прохождения ладьи. Пусть $M$ – максимальная разность между номерами соседних (по стороне) клеток. Каково наименьшее возможное значение $M$?

Прислать комментарий     Решение

Задача 98170

Темы:   [ Степень вершины ]
[ Принцип Дирихле (прочее) ]
[ Принцип крайнего (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 8,9,10

Петя заметил, что у всех его 25 одноклассников различное число друзей в этом классе. Сколько друзей у Пети?

Прислать комментарий     Решение

Задача 98521

Темы:   [ Выпуклые многоугольники ]
[ Разные задачи на разрезания ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 8,9

На доске нарисовали выпуклый многоугольник. В нём провели несколько диагоналей, не пересекающихся внутри него, так что он оказался разбит на треугольники. Затем возле каждой вершины записали число треугольников, примыкающих к этой вершине, после чего все диагонали стерли. Можно ли по оставшимся возле вершин числам восстановить стёртые диагонали?

Прислать комментарий     Решение

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 222]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .