ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Известно, что вруны всегда врут, правдивые всегда говорят правду, а хитрецы могут и врать, и говорить правду. Вы можете задавать вопросы, на которые есть ответ "да" или "нет" (например: "верно ли, что этот человек – хитрец?").
  a) Перед вами трое – врун, правдивый и хитрец, которые знают, кто из них кто. Как и вам это узнать?
  б) Перед вами четверо – врун, правдивый и два хитреца (все четверо знают, кто из них кто). Докажите, что хитрецы могут договориться отвечать так, что вы, спрашивая этих четверых, ни про кого из них не узнаете наверняка, кто он.

   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 17]      



Задача 58220

Тема:   [ Равносоставленные фигуры ]
Сложность: 2
Классы: 8,9

Разрежьте произвольный треугольник на 3 части и сложите из них прямоугольник.
Прислать комментарий     Решение


Задача 58221

Темы:   [ Равносоставленные фигуры ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 2+
Классы: 8,9

Разрежьте произвольный треугольник на части, из которых можно составить треугольник, симметричный исходному относительно некоторой прямой (части переворачивать нельзя).

Прислать комментарий     Решение

Задача 58222

Тема:   [ Равносоставленные фигуры ]
Сложность: 3
Классы: 8,9

Разрежьте правильный треугольник шестью прямыми на части и сложите из них 7 одинаковых правильных треугольников.
Прислать комментарий     Решение


Задача 35388

Тема:   [ Равносоставленные фигуры ]
Сложность: 3
Классы: 8,9,10

Правильный треугольник разрезать на четыре части так, чтобы из них можно было сложить квадрат.
Прислать комментарий     Решение


Задача 35389

Темы:   [ Равносоставленные фигуры ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 3
Классы: 8,9,10

Три одинаковых треугольника разрезать каждый на две части так, чтобы из них можно было сложить один треугольник.
Прислать комментарий     Решение


Страница: 1 2 3 4 >> [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .