ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 1024]      



Задача 54378

Темы:   [ Признаки и свойства касательной ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Отношение площадей подобных треугольников ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

Основание AC равнобедренного треугольника ABC является хордой окружности, центр которой лежит внутри треугольника ABC. Прямые, проходящие через точку B, касаются окружности в точках D и E. Найдите площадь треугольника DBE, если  AB = BC = 2,  ∠B = 2 arcsin ,  а радиус окружности равен 1.

Прислать комментарий     Решение

Задача 54379

Темы:   [ Признаки и свойства касательной ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Отношение площадей подобных треугольников ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

Основание KM равнобедренного треугольника KLM является хордой окружности, центр которой лежит вне треугольника KLM. Прямые, проходящие через точку L, касаются окружности в точках P и Q. Найдите площадь треугольника PLQ, если  KL = LM = ,  ∠KLM = 2 arcsin ,  а радиус окружности
равен 1.

Прислать комментарий     Решение

Задача 54595

Темы:   [ Касающиеся окружности ]
[ Построения ]
[ Вписанная, описанная и вневписанная окружности; их радиусы ]
Сложность: 3+
Классы: 8,9

Даны три точки A, B, C. С помощью циркуля и линейки постройте три окружности, попарно касающиеся в этих точках.

Прислать комментарий     Решение

Задача 54660

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Окружности (построения) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9

На одной из сторон угла взяты две точки A и B. Найдите на другой стороне угла такую точку C, чтобы угол ACB был наибольшим. Постройте точку C с помощью циркуля и линейки.

Прислать комментарий     Решение

Задача 54677

Темы:   [ Касающиеся окружности ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 3+
Классы: 8,9

Стороны треугольника равны 1 и 2, а угол между ними равен 120°. Окружность с центром на третьей стороне треугольника касается двух других сторон. Вторая окружность касается этих сторон и первой окружности. Найдите радиусы окружностей.

Прислать комментарий     Решение

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 1024]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .