ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 142 143 144 145 146 147 148 >> [Всего задач: 1024]      



Задача 54787

Темы:   [ Описанные четырехугольники ]
[ Две касательные, проведенные из одной точки ]
Сложность: 4+
Классы: 8,9

Основания трапеции равны a и b. Известно, что через середину одной из её сторон можно провести прямую, делящую трапецию на два четырёхугольника, в каждый из которых можно вписать окружность. Найдите другую боковую сторону этой трапеции.

Прислать комментарий     Решение


Задача 55401

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Признаки и свойства касательной ]
Сложность: 4+
Классы: 8,9

Через вершины A, B, C, D вписанного четырёхугольника, диагонали которого взаимно перпендикулярны, проведены касательные к описанной окружности. Докажите, что образованный ими четырёхугольник — вписанный.

Прислать комментарий     Решение


Задача 64924

Темы:   [ Окружности, вписанные в сегмент ]
[ Касательные прямые и касающиеся окружности (прочее) ]
[ Вспомогательные подобные треугольники ]
[ Вписанные четырехугольники (прочее) ]
[ Проективная геометрия (прочее) ]
Сложность: 4+
Классы: 10,11

Автор: Нилов Ф.

В сегмент, ограниченный хордой и дугой AB окружности, вписана окружность ω с центром I. Обозначим середину указанной дуги AB через M, а середину дополнительной дуги через N. Из точки N проведены две прямые, касающиеся ω в точках C и D. Противоположные стороны AD и BC четырёхугольника ABCD пересекаются в точке Y, а его диагонали пересекаются в точке X. Докажите, что точки X, Y, I и M лежат на одной прямой.

Прислать комментарий     Решение

Задача 66309

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Касающиеся окружности ]
[ Поворотная гомотетия (прочее) ]
[ Инверсия помогает решить задачу ]
[ Окружность Аполлония ]
Сложность: 4+
Классы: 9,10

Автор: Mahdi Etesami Fard

Точка D лежит на основании BC равнобедренного треугольника ABC, а точки M и K – на его боковых сторонах AB и AC соответственно, причём AMDK – параллелограмм. Прямые MK и BC пересекаются в точке L. Перпендикуляр к BC, восставленный из точки D, пересекает прямые AB и AC в точках X и Y соответственно. Докажите, что окружность с центром L, проходящая через D, касается описанной окружности треугольника AXY.

Прислать комментарий     Решение

Задача 103937

Темы:   [ Окружность, вписанная в угол ]
[ Две касательные, проведенные из одной точки ]
[ Вспомогательные подобные треугольники ]
[ Наибольшая или наименьшая длина ]
[ Периметр треугольника ]
Сложность: 4+
Классы: 9,10,11

Дан выпуклый четырехугольник ABCD. Прямые BC и AD пересекаются в точке O, причём B лежит на отрезке O и A на отрезке OD. I – центр вписанной окружности треугольника OAB, J – центр вневписанной окружности треугольника OCD, касающейся стороны CD и продолжений двух других сторон. Перпендикуляры, опущенные из середины отрезка IJ на прямые BC и AD, пересекают соответствующие стороны четырёхугольника (не продолжения) в точках X и Y. Доказать, что отрезок XY делит периметр четырёхугольника ABCD пополам, причём из всех отрезков с этим свойством и концами на BC и AD  XY имеет наименьшую длину.

Прислать комментарий     Решение

Страница: << 142 143 144 145 146 147 148 >> [Всего задач: 1024]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .